

WEEKLY TEST TYJ-02 TEST - 3 Balliwala SOLUTION Date 29-07-2019

[CHEMISTRY]

- 16. Ratio fo atoms $C: H: CI:: \frac{47.5}{12}: \frac{2.54}{1}: \frac{50}{35.5}:: 3.96: 2.54: 1.41:: 2.8: 1.8: 1$:: 14: 9: 5Empirical formula = $C_{14}H_{o}CI_{5}$
- 17. 300 mL of a gas weighs 0.368 g $1 \text{ mL of a gas will weigh} = \frac{0.368}{300} g$ $22400 \text{ mL of a gas will weight} = \frac{0.368}{300} \times 22400 = 27.477 \approx 27.5 \text{ g}$
- 18 Gram molecular mass of NH_3 is 7 g.
 - $\therefore \text{ No. of molecules in 4.25 g of NH}_3 = \frac{4.25}{17} \text{N}_A = \frac{\text{N}_A}{4}$

Now, one molecule of NH_3 contans 4 atoms

 $\therefore \frac{N_A}{4} \text{ molecules contian } \frac{N_A}{4} \times 4 = N_A \text{ atoms}$

Again, 32 g of
$$O_2 = N_A$$
 molecules = $2N_A$ atoms

$$\therefore \quad 8 \text{ g of } O_2 = \frac{N_A}{32} \times 8 = \frac{N_A}{4} \text{ molecules } \frac{2N_A}{32} \times 8 = \frac{N_A}{2} \text{ atoms}$$

On the other hand,

 $2g ext{ of } H_2 = N_A ext{molecules} = 2N_A ext{ atoms}$

4g of He =
$$N_A$$
 atoms [::gram atomic mass of He = 4g]

- 19. Ammonium dichromate is $(NH_4)_2Cr_2O_7$. 1 mole consists of 2 atoms of N, 8 atoms of H, 2 atoms of Cr, and 7 atoms of O. So, total no. of atoms = $(2 + 8 + 2 + 7) \times 6.023 \times 10^{23}$ = 114.437×10^{23}
- 20. Volume of 44g of $N_2O = 22.4 Lat STP$

Volume of 1 g of
$$N_2$$
O occupies $\frac{22.4}{44}$ L

Volume of 4.4 g of
$$N_2O$$
 occupies $\frac{22.4}{44} \times 4.4 = 2.24 L$

21. $2KCIO_{3(s)} \rightarrow 2KCI_{(s)} + 3O_{2(g)}$ Molar mass of $KCIO_3 = 122.5$ 245 g of $KCIO_3$ gives 96 g of O_2

245 g of KCIO₃ =
$$\frac{245}{122.5}$$
 mol = 2mol and 48 g of O₂ = $\frac{48}{16}$ = 3mol

3 mole of $\mathrm{O_2}$ is produced by 2 mol of $\mathrm{KClO_3}$

1 mol of O_2 is produced by $\frac{2}{3}$ mol of $KCIO_3$

2.4 mol of O_2 is produced by $\frac{2}{3} \times 2.4$ mol ok $KCIO_3 = 1.6$ mol of $KCIO_3$

[MATHEMATICS]

31. (a) From Venn-Euler's diagram,

$$\therefore (A-B) \cup (B-A) \cup (A \cap B) = A \cup B.$$

32. (c) Let A denote the set of Americans who like cheese and let B denote the set of Americans who like apples.

Let Population of American be 100.

Then
$$n(A) = 63, n(B) = 76$$

Now,
$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

= 63 + 76 - $n(A \cap B)$

$$\therefore n(A \cup B) + n(A \cap B) = 139$$

$$\Rightarrow n(A \cap B) = 139 - n(A \cup B)$$

But $n(A \cup B) \le 100$

$$\therefore -n(A \cup B) \ge -100$$

$$\therefore 139 - n(A \cup B) \ge 139 - 100 = 39$$

$$\therefore$$
 $n(A \cap B) \ge 39$ i.e., $39 \le n(A \cap B)$ (i)

Again, $A \cap B \subseteq A, A \cap B \subseteq B$

$$\therefore$$
 $n(A \cap B) \le n(A) = 63$ and $n(A \cap B) \le n(B) = 76$

$$\therefore n(A \cap B) \leq 63$$
(ii)

Then, $39 \le n(A \cap B) \le 63 \Rightarrow 39 \le x \le 63$.

33. (b) Since $2^m - 2^n = 56 = 8 \times 7 = 2^3 \times 7$ $\Rightarrow 2^n (2^{m-n} - 1) = 2^3 \times 7$, $\therefore n = 3$ and $2^{m-n} = 8 = 2^3$ $\Rightarrow m - n = 3 \Rightarrow m - 3 = 3 \Rightarrow m = 6$; $\therefore m = 6, n = 3$.

- 34. (c) The number of proper subset $= 2^n 1$ = $2^5 - 1 = 32 - 1 = 31$.
- 35. (a) Since $A \subseteq B$, $\therefore A \cap B = A$ $\therefore n(A \cap B) = n(A) = 3$.
 - (c) n(P) = 25%, n(C) = 15% $n(P^c \cap C^c) = 65\%$, $n(P \cap C) = 2000$ Since, $n(P^c \cap C^c) = 65\%$ $\therefore n(P \cup C)^c = 65\%$ and $n(P \cup C) = 35\%$

Now, $n(P \cup C) = n(P) + n(C) - n(P \cap C)$

 $35 = 25 + 15 - n(P \cap C)$

 $\therefore n(P \cap C) = 40 - 35 = 5$. Thus $n(P \cap C) = 5\%$

But $n(P \cap C) = 2000$

36.

 \therefore Total number of families $=\frac{2000 \times 100}{5} = 40,000$

Since, $n(P \cup C) = 35\%$ and total number of families = 40,000

and $n(P \cap C) = 5\%$. \therefore (2) and (3) are correct.