WEEKLY TEST TYJ-02 TEST - 3 Balliwala SOLUTION Date 29-07-2019

[CHEMISTRY]

16. Ratio fo atoms $\mathrm{C}: \mathrm{H}: \mathrm{Cl}:: \frac{47.5}{12}: \frac{2.54}{1}: \frac{50}{35.5}:: 3.96: 2.54: 1.41:: 2.8: 1.8: 1$
: : 14:9:5
Empirical formula $=\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{Cl}_{5}$
17. 300 mL of a gas weighs 0.368 g

1 mL of a gas will weigh $=\frac{0.368}{300} \mathrm{~g}$
22400 mL of a gas will weight $=\frac{0.368}{300} \times 22400=27.477 \approx 27.5 \mathrm{~g}$

18 Gram molecular mass of NH_{3} is 7 g .
$\therefore \quad$ No. of molecules in 4.25 g of $\mathrm{NH}_{3}=\frac{4.25}{17} \mathrm{~N}_{\mathrm{A}}=\frac{\mathrm{N}_{\mathrm{A}}}{4}$
Now, one molecule of NH_{3} contans 4 atoms
$\therefore \quad \frac{\mathrm{N}_{\mathrm{A}}}{4}$ molecule contian $\frac{\mathrm{N}_{\mathrm{A}}}{4} \times 4=\mathrm{N}_{\mathrm{A}}$ atoms
Again, 32 g of $\mathrm{O}_{2}=\mathrm{N}_{\mathrm{A}}$ molecules $=2 \mathrm{~N}_{\mathrm{A}}$ atoms
$\therefore 8 \mathrm{~g}$ of $\mathrm{O}_{2}=\frac{\mathrm{N}_{\mathrm{A}}}{32} \times 8=\frac{\mathrm{N}_{\mathrm{A}}}{4}$ molecules $\frac{2 \mathrm{~N}_{\mathrm{A}}}{32} \times 8=\frac{\mathrm{N}_{\mathrm{A}}}{2}$ atoms
On the other hand,
2 g of $\mathrm{H}_{2}=\mathrm{N}_{\mathrm{A}}$ molecules $=2 \mathrm{~N}_{\mathrm{A}}$ atoms
4 g of $\mathrm{He}=\mathrm{N}_{\mathrm{A}}$ atoms $\quad[\because$ gram atomic mass of $\mathrm{He}=4 \mathrm{~g}]$
19. Ammonium dichromate is $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$.

1 mole consists of 2 atoms of $\mathrm{N}, 8$ atoms of $\mathrm{H}, 2$ atoms of Cr , and 7 atoms of O .
So, total no. of atoms $=(2+8+2+7) \times 6.023 \times 10^{23}$
$=114.437 \times 10^{23}$
Volume of 44 g of $\mathrm{N}_{2} \mathrm{O}=22.4 \mathrm{~L}$ at STP
Volume of 1 g of $\mathrm{N}_{2} \mathrm{O}$ occupies $\frac{22.4}{44} \mathrm{~L}$
Volume of 4.4 g of $\mathrm{N}_{2} \mathrm{O}$ occupies $\frac{22.4}{44} \times 4.4=2.24 \mathrm{~L}$
21. $2 \mathrm{KClO}_{3(\mathrm{~s})} \rightarrow 2 \mathrm{KCl}_{(\mathrm{s})}+3 \mathrm{O}_{2(\mathrm{~g})}$

Molar mass of $\mathrm{KCl}_{3}=122.5$
245 g of KClO_{3} gives 96 g of O_{2}
245 g of $\mathrm{KClO}_{3}=\frac{245}{122.5} \mathrm{~mol}=2 \mathrm{~mol}$ and 48 g of $\mathrm{O}_{2}=\frac{48}{16}=3 \mathrm{~mol}$
3 mole of O_{2} is produced by 2 mol of KClO_{3}
1 mol of O_{2} is produced by $\frac{2}{3}$ mol of KClO_{3}
2.4 mol of O_{2} is produced by $\frac{2}{3} \times 2.4 \mathrm{~mol}$ ok $\mathrm{KClO}_{3}=1.6 \mathrm{~mol}$ of KClO_{3}

[MATHEMATICS]

31.

(a) From Venn-Euler's diagram,

$\therefore(A-B) \cup(B-A) \cup(A \cap B)=A \cup B$.
32. (c) Let A denote the set of Americans who like cheese and let B denote the set of Americans who like apples.
Let Population of American be 100.
Then $n(A)=63, n(B)=76$
Now, $n(A \cup B)=n(A)+n(B)-n(A \cap B)$

$$
=63+76-n(A \cap B)
$$

$\therefore n(A \cup B)+n(A \cap B)=139$
$\Rightarrow n(A \cap B)=139-n(A \cup B)$
But $n(A \cup B) \leq 100$
$\therefore-n(A \cup B) \geq-100$
$\therefore 139-n(A \cup B) \geq 139-100=39$
$\therefore n(A \cap B) \geq 39$ i.e., $39 \leq n(A \cap B)$
Again, $A \cap B \subseteq A, A \cap B \subseteq B$
$\therefore n(A \cap B) \leq n(A)=63$ and $n(A \cap B) \leq n(B)=76$
$\therefore n(A \cap B) \leq 63$
Then, $39 \leq n(A \cap B) \leq 63 \Rightarrow 39 \leq x \leq 63$.
33. (b) Since $2^{m}-2^{n}=56=8 \times 7=2^{3} \times 7$
$\Rightarrow 2^{n}\left(2^{m-n}-1\right)=2^{3} \times 7, \therefore n=3$ and $2^{m-n}=8=2^{3}$
$\Rightarrow m-n=3 \Rightarrow m-3=3 \Rightarrow m=6 ; \therefore m=6, n=3$.
34. (c) The number of proper subset $=2^{n}-1$ $=2^{5}-1=32-1=31$.
35. (a) Since $A \subseteq B, \therefore A \cap B=A$
$\therefore n(A \cap B)=n(A)=3$.
(c) $n(P)=25 \%, n(C)=15 \%$
$n\left(P^{c} \cap C^{c}\right)=65 \%, n(P \cap C)=2000$
Since, $n\left(P^{c} \cap C^{c}\right)=65 \%$
$\therefore n(P \cup C)^{c}=65 \%$ and $n(P \cup C)=35 \%$
Now, $n(P \cup C)=n(P)+n(C)-n(P \cap C)$
$35=25+15-n(P \cap C)$
$\therefore n(P \cap C)=40-35=5$. Thus $n(P \cap C)=5 \%$
36. But $n(P \cap C)=2000$
\therefore Total number of families $=\frac{2000 \times 100}{5}=40,000$
Since, $n(P \cup C)=35 \%$
and total number of families $=40,000$
and $n(P \cap C)=5 \% . \therefore(2)$ and (3) are correct.

